Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Evaluation of calix[4]arene-based chiral diphosphite ligands in Rh-catalyzed asymmetric hydrogenation of simple dehydroamino acid derivatives

Shasha Liu^a, Christian A. Sandoval^{b,*}

^a Department of Chemistry, College of Science, Tianjin University, 92 Weijin Rd, Tianjin 300072, PR China

^b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, PR China

ARTICLE INFO

Article history: Received 2 December 2009 Received in revised form 4 March 2010 Accepted 29 March 2010 Available online 3 April 2010

Keywords: Asymmetric catalysis Homogeneous catalysis Hydrogenation Calixarene Phosphite ligand Rhodium

ABSTRACT

The calix[4]arene framework was readily modified to generate a number of chiral BINOL-based diphosphite ligands (**3**) capable of forming *in situ* Rh-complexes which catalyzed the asymmetric hydrogenation of model substrates methyl-(*Z*)-2-(acetamido)acrylate (**1a**) and methyl-(*Z*)-2-(acetamido)cinnamate (**1b**). The (*S*,*S*)-catalyst generated the (*R*)-product. Upper rim (R¹) and 1,3-*O*-alkylation (R²) substitution on the calixarene strongly influenced catalyst activity and chiral induction. Optimum results were obtained when R¹ was $-C(CH_3)_3$ and R² was $-CH_2CH_2CH_3$ (**3b**). Under optimized conditions, **3b** hydrogenated **1a** and **1b** in 98 and 96% ee, respectively. Overall, better catalyst performance was observed for "locked" cone-conformers of **3**, with higher activity evident for the less sterically hindered **1a** (TOF up to 1300 h⁻¹ at *P*(H₂) = 5 atm).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Asymmetric hydrogenation of prochiral olefins by transition metal molecular catalysts are among the most important and widely used catalytic transformations [1]. The ability to generate chiral compounds efficiently using molecular hydrogen has further led to the development of several industrial applications [1,2]. Due to the ubiquitous role of chiral phosphine ligands in such systems, and the current growing demand for optically pure compounds, the further development of novel chiral phosphine and other P-based ligands is of great interest [1,3]. Among the variety of P-linkages (P–C (aromatic or aliphatic), P–O, P–N) that have been used for ligand construction [1c,3,4], phosphite-based ligands have proven to be a cost effective and versatile structural and functional motif [5,6]. Here, BINOL (BINOL = 2,2'-dihydroxy-1,1'-binaphthyl) based phosphites have generally yielded the most effective catalysts giving hydrogenation products in (often) very high enantiomeric purity.

Calixarenes are a readily modified macrocyclic family that have served as appropriate platforms for the construction of P-ligands for a range of catalytic transformations [7–9]. For phosphite-based calixarenes, application in hydroformylation catalysis has been particularly successful due to the inherently large bite angles such P-ligands form with the central metal [10], which has been found to promote formation of the desired linear aldehyde product [9]. By comparison, the use of calixarene-based P-ligands for related asymmetric hydrogenation has remained relatively unexplored [11,12]. Herein, we describe the application of several chiral diphosphite calixarene-based ligands in Rh-catalyzed asymmetric hydrogenation and evaluate their potential using methyl-(Z)-2-(acetamido)acrylate (**1a**) and methyl-(Z)-2-(acetamido)cinnamate (**1b**) as model substrates.

2. Experimental

2.1. Materials and methods

All moisture and oxygen sensitive manipulations were performed using standard Schlenk techniques under an argon atmosphere. Toluene, ether and THF were freshly distilled from metal sodium/benzophenone under argon prior to use. CH₂Cl₂ was freshly distilled from CaH₂ under argon prior to use. CH₃OH, (CH₃)₂CHOH, (CH₃)₃COH, CH₃CO₂CH₂CH₃ and CH₂ClCH₂Cl were distilled from CaH₂ and stored under argon. CDCl₃ was stored under CaH₂ and collected by cold distillation under vacuum prior to use. Solvents used in the hydrogenation reactions were degassed by three freeze-and-thaw cycles prior to use. Triethylamine and phosphorus trichloride were distilled form CaH₂ under argon. Other commercially available materials were used without further purification. Hydrogen gas (99.9999%) was obtained from Shanghai Fujiang Specialty Gases Co., Ltd. [Rh(COD)₂BF₄]₂

^{*} Corresponding author. Tel.: +86 21 5492 5312; fax: +86 21 5492 5480. *E-mail address:* sandoval@mail.sioc.ac.cn (C.A. Sandoval).

^{1381-1169/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2010.03.034

[13], methyl-(Z)-2-(acetamido)acrylate (1a) [14], methyl-(Z)-2-(acetamido)cinnamate (1b) [15], p-tert-butylcalix[4]arene [16], calix[4]arene [17] and p-benzylcalix[4]arene [18] were synthesized according to reported procedures. ¹H-, ¹³C- and ³¹P NMR data were collected on a Varian Mercury vx 300 or 400 spectrometer. Chemical shifts are expressed in parts per million (ppm) relative to TMS (¹H), CHCl₃ residue (¹³C) or 85% H₃PO₄ (³¹P). MS (MALDI) were recorded on a IonSpec 4.7 (Applied IonSpec Co.). Elemental analyses were performed on an Elementar vario EL III. Gas chromatography (GC) analysis was conducted on an Agilent Technologies 7890A instrument equipped with a Chirasil-DEX CB fused silica capillary column (df=0.25 µm, 0.25 mm i.d., 25 m, Varian). High performance liquid chromatography (HPLC) analysis was conducted on a Waters 515 instrument equipped with a Chiralpak AD-H column (0.46 cm i.d., 25 cm L, Daicel). Optical rotations were obtained using a Jasco P-1030 polarimeter.

2.2. Synthesis of compounds

2.2.1. (S,S)-5,11,17,23-Tetra-tert-butyl-25,27-dimethoxy-26,28bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene (**3a**)

A hexane solution of *n*-BuLi (0.75 mL, 2.5 mol/L, 1.86 mmol) was slowly added at 0°C to a stirred solution of p-tertbutyl-1,3-dimethoxycalix[4]arene [19] (630 mg, 0.93 mmol) in dried THF (30 mL) using a syringe. The reaction mixture was stirred for 2 h at RT. Subsequently, [(S)-(1,1'-binaphthalene-2,2'diyl)]chlorophosphite [20] (652 mg, 1.86 mmol) in dried THF (8 mL) was added at 0 °C and the reaction mixture was stirred for 11 h at RT. After removal of the volatiles, 25 mL of CH₂Cl₂ was added to the resulting solid. LiCl was removed by filtration through a short pad of Celite and the filtrate was evaporated to dryness. The residue was subjected to flash chromatography (eluent: petroleum ether/ethyl acetate = 200/1) to afford the title compound (622 mg, 51%) as a white foamy solid: ¹H NMR (300 MHz, CDCl₃) δ = 7.98–6.34 (m, 32 H, calix-ArH and BINOL-ArH), 4.54-3.01 (m, 14 H, ArCH₂Ar and OCH₃), 1.33–0.72 (m, 36 H, C(CH₃)₃); ¹³C NMR (100.5 MHz, $CDCl_3$) $\delta = 156.08 - 120.81$ (Ar-C), 60.75, 60.08, 57.86 (s, OCH₃), 37.80 (s, ArCH₂Ar), 37.13 (s, ArCH₂Ar), 34.12 (s, C(CH₃)₃), 33.65 (s, C(CH₃)₃), 32.43 (s, ArCH₂Ar), 32.15 (s, ArCH₂Ar), 31.65, 31.31, 31.02, 30.83, 29.70 (s, C(CH₃)₃); ³¹P NMR (121.5 MHz, CDCl₃) δ = 145.99 (s, trace), 144.34 (s, trace), 143.99 (s, major), 142.31 (s), 138.18 (s). MS (MALDI): m/e 1305.6 [M+H]+; 1327.5 [M+Na]+. Anal. Calcd. for C₈₆H₈₂O₈P₂ (1305.51): C, 79.12; H, 6.33; found: C, 78.01; H, 6.58. Note that 3a was obtained as a mixture of conformational isomers which was used without further separation for hydrogenation experiments.

2.2.2. (S,S)-5,11,17,23-Tetra-tert-butyl-25,27-dipropoxy-26,28bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene [9i] (**3b**)

A suspension of *p*-tert-butyl-1,3-dipropoxycalix[4]arene [21] (733 mg, 1.0 mmol) and NaH (119 mg, 60% dispension in oil, 2.98 mmol) in dried toluene (20 mL) was heated under reflux for 17 h. [(*S*)-(1,1'-Binaphthalene-2,2'-diyl)]chlorophosphite [20] (772 mg, 2.2 mmol) in dried toluene (10 mL) was added at 0 °C and the reaction mixture was stirred for 2 h at RT. The crude reaction mixture was filtered through a short pad of silica gel and washed with toluene (2× 15 mL). The filtrate was concentrated to dryness and the residue subjected to flash chromatography (eluent: petroleum ether/ethyl acetate = 90/1) to afford the title compound (454 mg, 33%) as a white foamy solid: ¹H NMR (300 MHz, CDCl₃) δ = 7.93 (d, ³*J* = 8.1 Hz, 2 H, BINOL-ArH), 7.86 (d, ³*J* = 8.7 Hz, 2 H, BINOL-ArH), 7.59 (d, ³*J* = 8.7 Hz, 2 H, BINOL-ArH), 7.59 (d, ³*J* = 8.7 Hz, 2 H, BINOL-ArH), 7.46–7.09 (m, 12 H, BINOL-ArH), 7.04 (d, ³*J* = 8.7 Hz, 2 H, BINOL-ArH), 6.89

(d, ${}^{4}J$ =2.4 Hz, 2 H, calix-ArH), 6.82 (d, ${}^{4}J$ =2.4 Hz, 2 H, calix-ArH), 6.74 (d, ${}^{4}J$ =2.4 Hz, 2 H, calix-ArH), 6.62 (d, ${}^{4}J$ =2.4 Hz, 2 H, calix-ArH), 4.74 and 3.39 (AB system, ${}^{2}J$ =12.9 Hz, 4 H, ArCH₂Ar), 4.65 and 2.95 (AB system, ${}^{2}J$ =12.9 Hz, 4 H, ArCH₂Ar), 3.70–3.63 (m, 4 H, OCH₂), 1.81–1.63 (m, 4 H, OCH₂CH₂), 1.10 (s, 18 H, C(CH₃)₃), 1.08 (s, 18 H, C(CH₃)₃), 0.29 (t, ${}^{3}J$ =7.8 Hz, 6 H, CH₂CH₃); 31 P NMR (162 MHz, CDCl₃) δ =137.20 (s, trace), 136.99 (s, trace), 135.87 (s), 133.00 (br s, major, cone conformational isomer), 132.86 (s), 132.48 (s, trace), 127.25 (s), 120.85 (s). Note that **3b** was obtained predominantly as the cone-conformer (ca. 90%) and was used without further separation for hydrogenation experiments.

2.2.3. (S,S)-5,11,17,23-Tetra-tert-butyl-25,27-dibutoxy-26,28bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene (**3c**)

A suspension of *p*-tert-butyl-1,3-dibutoxycalix[4]arene [22] (931 mg, 1.22 mmol) and NaH (122 mg, 60% dispension in oil, 3.05 mmol) in dried toluene (30 mL) was heated under reflux for 18 h. [(S)-(1,1'-Binaphthalene-2,2'-diyl)]chlorophosphite [20] (941 mg, 2.68 mmol) in dried toluene (15 mL) was added at 0 °C and the reaction mixture was stirred for 2 h at RT. The crude reaction mixture was filtered through a short pad of silica gel and washed with toluene $(3 \times 15 \text{ mL})$. The filtrate was concentrated to ca. 5 mL. Addition of petroleum ether (50 mL) gave the title compound as colorless crystals (873 mg, 52%): ¹H NMR (300 MHz, CDCl₃) δ = 7.88 (d, ³*J* = 8.1 Hz, 4 H, BINOL-ArH), 7.76 (d, ³*J* = 8.1 Hz, 2 H, BINOL-ArH), 7.70 (d, ${}^{3}J$ = 9.0 Hz, 2 H, BINOL-ArH), 7.47 (d, ${}^{3}J$ = 9.0 Hz, 2 H, BINOL-ArH), 7.42-7.10 (m, 14 H, BINOL-ArH), 7.02-6.97 (m, 4 H, calix-ArH), 6.73 (d, ⁴*J*=1.8 Hz, 2 H, calix-ArH), 6.56 (d, ⁴*J*=1.8 Hz, 2 H, calix-ArH), 4.62 and 3.37 (AB system, ²J=12.9 Hz, 4 H, ArCH₂Ar), 4.62 and 3.11 (AB system, ${}^{2}I$ = 12.9 Hz, 4 H, ArCH₂Ar), 3.64–3.44 (m, 4 H, OCH₂), 1.73–1.65 (m, 4 H, OCH₂CH₂), 1.24 (s, 18 H, C(CH₃)₃), 0.99 (s, 18 H, C(CH₃)₃), 0.90–0.82 (m, 4 H, CH₂CH₃), 0.20 (t, ³*J*=6.6 Hz, 6 H, CH₂CH₃); ¹³C NMR (100.5 MHz, CDCl₃) δ =154.18-121.90 (Ar-C), 75.51 (s, OCH₂), 33.96 (s, C(CH₃)₃), 33.75 (s, C(CH₃)₃), 32.46 (s, ArCH₂Ar), 31.83 (s, ArCH₂Ar), 31.60 (s, C(CH₃)₃), 31.32 (s, OCH₂CH₂), 31.28 (s, C(CH₃)₃), 18.35 (s, CH₂CH₃), 13.82 (s, CH₂CH₃); 31 P NMR (121.5 MHz, CDCl₃) δ = 140.77 (br s, P(OAr)₃). MS (MALDI): m/e 1411.6 [M+Na]⁺. Anal. Calcd. for C₉₂H₉₄O₈P₂ (1389.67): C, 79.51; H, 6.82; found: C, 79.68; H, 6.92. Only the cone-conformer for 3c was obtained. Crystals of 3c (colorless) suitable for X-ray diffraction were obtained by slow diffusion of petroleum ether into a solution of **3c** in toluene.

2.2.4. (S,S)-5,11,17,23-Tetra-tert-butyl-25,27-dibenzyloxy-26,28-bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene [9j] (**3d**)

A hexane solution of *n*-BuLi (0.8 mL, 2.5 mol/L, 2.0 mmol) was slowly added at 0°C to a stirred solution of *p*-tertbutyl-1,3-dibenzyloxycalix[4]arene [23] (828 mg, 1.0 mmol) in dried THF (30 mL) using a syringe. The reaction mixture was stirred for 2 h at RT. Subsequently, [(S)-(1,1'-binaphthalene-2,2'diyl)]chlorophosphite [20] (701 mg, 2.0 mmol) in dried THF (10 mL) was added at 0°C and the reaction mixture was stirred for 12h at RT. After removal of the volatiles, 30 mL of CH₂Cl₂ was added to the resulting solid. LiCl was removed by filtration through a short pad of Celite and the filtrate was evaporated to dryness. The remaining residue was subjected to flash chromatography (eluent: petroleum ether/ethyl acetate = 200/1) to afford the title compound (450 mg, 31%) as a white solid: ¹H NMR (300 MHz, CDCl₃) δ = 7.94 (d, ³*J* = 8.1 Hz, 2 H, BINOL-ArH), 7.71 (d, ³*J* = 8.7 Hz, 4 H, Bn-ArH), 7.50-7.44 (m, 2 H, Bn-ArH), 7.40-7.05 (m, 26 H, Bn-ArH and BINOL-ArH), 6.69 (d, ⁴J=2.4Hz, 2 H, calix-ArH), 6.62 (d, ⁴*J* = 9.3 Hz, 2 H, calix-ArH), 6.44 (d, ⁴*J* = 2.4 Hz, 2 H, calix-ArH), 6.35 $(d, {}^{4}J = 2.4 \text{ Hz}, 2 \text{ H}, \text{ calix-ArH}), 5.11 ({}^{2}J = 11.7 \text{ Hz}, 2 \text{ H}, \text{ CHHPh}), 4.78$ (²*J* = 11.7 Hz, 2 H, CHHPh), 4.71 and 3.01 (AB system, ²*J* = 12.9 Hz, 4 H, ArCH₂Ar), 4.71 and 2.60 (AB system, ²*J* = 12.9 Hz, 4 H, ArCH₂Ar), 1.25 (s, 18 H, C(CH₃)₃), 0.81 (s, 18 H, C(CH₃)₃); ³¹P NMR (121.5 MHz, CDCl₃) δ = 123.89 (s, P(OAr)₃). Only the cone-conformer for **3d** was obtained.

2.2.5. (*S*,*S*)-5,11,17,23-Tetra-tert-butyl-25,27-dibenzyloxy-26,28-bis(1,1'-binaphthyl-3,3'-dimethyl-2,2'dioxyphosphanyloxy)calix[4]arene (**3e**)

A suspension of *p*-tert-butyl-1,3-dibenzyloxycalix[4]arene [23] (99.6 mg, 0.12 mmol) and NaH (15.2 mg, 60% dispension in oil, 0.38 mmol) in dried toluene (7 mL) was heated under reflux for 13 h. [(*S*)-(1,1'-binaphthalene-3,3'-dimethyl-2,2'-diyl)]chlorophosphite [24] (90.9 mg, 0.24 mmol) in dried toluene (3 mL) was added at 0°C and the reaction mixture was stirred for 2 h at RT. The crude reaction mixture was filtered through a short pad of silica gel and washed with toluene ($2 \times 5 \text{ mL}$). The filtered solution was evaporated to dryness, leading to the title compound as a pale yellow foamy solid (103.2 mg, 57%): ¹H NMR (400 MHz, CDCl₃) δ = 7.81–7.52 (m, 10 H, Bn-ArH and BINOL-ArH), 7.36–7.31 (m, 10H, Bn-ArH and BINOL-ArH), 7.20-7.07 (m, 10H, BINOL-ArH), 7.04 (s, 4H, calix-ArH), 6.79 (s, 4H, calix-ArH), 5.04 (s, 4H, OCH₂Ph), 4.29 (d, ²*J* = 12.8 Hz, 4 H, ArCH₂Ar), 3.27 (d, ²*J* = 12.8 Hz, 4 H, ArCH₂Ar), 2.32-2.22 (m, 12 H, BINOL-ArCH₃), 1.29 (s, 18 H, C(CH₃)₃), 0.95 (s, 18 H, C(CH₃)₃); ¹³C NMR (100.5 MHz, CDCl₃) δ = 150.72–123.04 (Ar-C), 77.92 (s, OCH₂Ph), 33.91 (s, C(CH₃)₃), 33.79 (s, C(CH₃)₃), 31.70 (s, C(CH₃)₃), 31.42 (s, ArCH₂Ar), 30.99 (s, C(CH₃)₃), 29.69 (s, ArCH₂Ar), 19.72, 18.20, 18.16, 17.51, 17.29, 16.93 (s, BINOL-ArCH₃); ³¹P NMR (121.5 MHz, CDCl₃) δ = 142.97 (s, major), 141.05 (s), 138.69 (s). MS (MALDI): m/e 1513.7 [M+H]⁺. HRMS (MALDI): Calcd. for [C₁₀₂H₉₉O₈P₂]⁺: 1513.681; found: 1513.680. Anal. Calcd. for C₁₀₂H₉₈O₈P₂ (1513.81): C, 80.93; H, 6.53; found: C, 78.21; H, 7.78. Note that 3e was obtained as a mixture of conformational isomers which was used without further separation for hydrogenation experiments.

2.2.6. (*S*,*S*)-25,27-Dimethoxy-26,28-bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene (**3f**)

A hexane solution of *n*-BuLi (0.6 mL, 1.6 mol/L, 0.972 mmol) was slowly added at 0°C to a stirred solution of 1,3dimethoxycalix[4]arene [25] (220 mg, 0.486 mmol) in dried toluene (20 mL), using a syringe. The reaction mixture was stirred for 2 h at RT. Subsequently, [(S)-(1,1'-binaphthalene-2,2'diyl)]chlorophosphite [20] (341 mg, 0.972 mmol) in dried toluene (5 mL) was added at 0 °C and the reaction mixture was stirred for 12 h at RT. Following removal of volatiles, 15 mL of CH₂Cl₂ was added to the resulting solid. LiCl was removed by filtration through a short pad of Celite and the filtrate was evaporated to dryness. The residue was subjected to flash chromatography (eluent: petroleum ether/ethyl acetate = 20/1) to afford the title compound (172 mg, 33%) as a white solid: ¹H NMR (400 MHz in $CDCl_3$) $\delta = 8.16 - 7.24$ (m, 24 H, BINOL-ArH), 7.16-6.25 (m, 12H, calix-ArH), 4.55–2.82 (m, 14 H, ArCH₂Ar and OCH₃); ^{13}C NMR (100.5 MHz, $CDCl_3$) $\delta = 158.61 - 121.83$ (Ar-C), 77.20, 60.96, 60.05, 58.92 (s, OCH3), 36.37, 35.38, 31.70, 31.62, 30.29, 29.67 (s, ArCH2Ar); ³¹P NMR (162 MHz, CDCl₃) δ = 148.07 (s), 145.43 (s, major), 144.80 (s). MS (MALDI): m/e 1081.3 [M+H]⁺; 1103.3 [M+Na]⁺. HRMS (MALDI): Calcd. for [C₇₀H₅₁O₈P₂]⁺: 1081.3054; found: 1081.3073. Anal. Calcd. for C₇₀H₅₀O₈P₂·4H₂O (1081.09+72.06): C, 72.91; H, 5.07. Found: C, 70.89; H, 4.76. Note that **3f** was obtained as a mixture of conformational isomers and was used without further separation for hydrogenation experiments.

2.2.7. (*S*,*S*)-5,11,17,23-Tetra-benzyl-25,27-dibenzyloxy-26,28bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene (**3g**)

A suspension of *p*-benzyl-1,3-dibenzyloxycalix[4]arene [18] (93 mg, 0.096 mmol) and NaH (9.6 mg, 60% dispension in oil, 0.24 mmol) in dried toluene (7 mL) was heated under reflux for 11 h. [(*S*)-(1,1'-Binaphthalene-2,2'-divl)]chlorophosphite [20] (67.7 mg, 0.193 mmol) in dried toluene (3 mL) was added at $0 \degree C$ and the reaction mixture was stirred for 2 h at RT. The crude reaction mixture was filtered through a short pad of silica gel and washed with toluene ($2 \times 5 \text{ mL}$). The filtered solution was evaporated to dryness, leading to the title compound as a pale yellow foamy solid (90.0 mg, 59%): ¹H NMR (400 MHz, CDCl₃) δ = 8.00–7.81 (m, 4H, BINOL-ArH), 7.61-7.59 (m, 4H, Bn-ArH), 7.38-7.10 (m, 42H, BINOL-ArH and Bn-ArH), 6.96 (d, ³/= 3.6 Hz, 4H, Bn-ArH), 6.81 (s, 4H, calix-ArH), 6.67 (s, 4H, calix-ArH), 4.99 (s, 4H, OCH₂Ph), 4.23 (d, ²*I*=13.2 Hz, 4 H, ArCH₂Ar), 3.84 (s, 4H, ArCH₂Ph), 3.58 (s, 4H, ArCH₂Ph), 3.21 (d, ²/=13.2Hz, 4 H, ArCH₂Ar); ¹³C NMR $(100.5 \text{ MHz}, \text{ CDCl}_3) \delta = 151.62 - 126.19 \text{ (Ar-C)}, 78.29 \text{ (s, OCH}_2\text{Ph}),$ 77.20 (s, OCH₂Ph), 41.23 (s, ArCH₂Ph), 40.94 (s, ArCH₂Ph), 31.54 (s, ArCH₂Ar); ³¹P NMR (121.5 MHz, CDCl₃) δ = 145.68 (s). MS (MALDI): m/e 1593.6 [M+H]⁺. Anal. Calcd. for C₁₁₀H₈₂O₈P₂ (1593.77): C, 82.90; H, 5.19. Found: C, 82.53; H, 5.94. Only the cone-conformer for **3g** was obtained.

2.3. Solution studies

2.3.1. In situ [(3)Rh(COD)]BF₄ formation

Accurately measured amounts of (S,S)-3 (11.0–15.2 mg, 10 µmol) were placed in a pre-oven-dried (120 °C) 10 mL Schlenk and the atmosphere replaced with argon. Dried $CDCl_3$ (1.0 mL) was added to obtain a 10 mM solution. To this was added 1 equiv. of $[Rh(COD)_2BF_4]$ (4.1 mg, 10 µmol) and the mixture gently stirred for 30 min. ³¹P NMR (162 MHz, CDCl₃) spectra of resulting solutions were obtained after a 5 and 30 min period. Following removal of volatiles under vacuum, MS (MALDI) spectra for resulting powders were obtained. Complex, δ (ppm); m/e: (a) [(**3a**)Rh(COD)]BF₄, 120.6 (d, $J_{\rm Rb P}$ = 256 Hz, 95%), 117.5 (d, $J_{\rm PP}$ = 46 Hz, <5%), 113.6 (d, $J_{PP} = 46 \text{ Hz}, <5\%$; 1407.5 [(**3a**)Rh]⁺; (b) [(**3b**)Rh(COD)]BF₄, 120.6 (dd, $J_{Rh,P}$ = 255 Hz, $J_{P,P}$ = 41 Hz, 5%), 119.9 (d, $J_{Rh,P}$ = 255 Hz, 85%), 117.2 (dd, $J_{Rh,P}$ = 265 Hz, $J_{P,P}$ = 43 Hz, 5%), 117.1 (d, $J_{P,P}$ = 47 Hz, <5%), 113.0 (d, *J*_{P,P} = 47 Hz, <5%); 1463.5 [(**3b**)Rh]⁺; (c) [(**3c**)Rh(COD)]BF₄, 120.2 (d, $J_{Rh,P}$ = 255 Hz, 90%), 117.5 (d, $J_{P,P}$ = 47 Hz, <5%), 113.5 (d, $J_{P,P} = 47 \text{ Hz}$, <5%); 1491.5 [(**3c**)Rh]⁺; (d) [(**3d**)Rh(COD)]BF₄, 119.5 (d, $J_{Rh,P}$ = 257 Hz, 90%), 117.7 (d, $J_{P,P}$ = 46 Hz, <5%), 113.8 (d, *J*_{P.P} = 46 Hz, <5%); 1559.5 [(**3d**)Rh]⁺; (e) **3e**, no complex formation was observed; (f) **3f**, no complex formation was observed.

2.3.2. Evidence for in situ [(**3a**)Rh(**1b**)]BF₄ generation

Accurately measured amounts of (S,S)-3 (13.1–14.6 mg, 10 µmol) were placed in a pre-oven-dried (120 °C) 10 mL Schlenk and the atmosphere replaced with argon. Dried CDCl₃ (1.0 mL) was added to obtain a 10 mM solution. To this was added 1 equiv. of [Rh(COD)₂BF₄] (4.1 mg, 10 µmol) and the mixture gently stirred (15 min). The resulting solution was then stirred under an H₂ atmosphere (1 atm) for 15 min. ³¹P NMR spectra were obtained under argon atm using 0.5 mL. To the remaining 0.5 mL was added an aliquot (0.5 mL) of **1b** in CDCl₃ (10 mM, 1 equiv./Rh) under argon. The resulting mixture was gently stirred for 30 min and the ³¹P NMR spectrum obtained. (a) $[(3a)Rh(CDCl_3)_2]BF_4$ not formed, 120.0 (d, $J_{Rh,P}$ = 255 Hz, [(3)Rh(COD)]BF₄); no detectable change with addition of **1b**. (b) In situ generated [(**3b**)Rh(CDCl₃)₂]BF₄ not detected, 120.5 (dd, $J_{Rh,P}$ = 255 Hz, $J_{P,P}$ = 41 Hz, 10%), 119.4 (d, $J_{Rh,P} = 255 \text{ Hz}$, 15%), 117.5 (dd, $J_{Rh,P} = 266 \text{ Hz}$, $J_{P,P} = 43 \text{ Hz}$, 10%), 112.8 (d, $J_{P,P} = 60 \text{ Hz}$, 20%), 107.7 (d, $J_{P,P} = 60 \text{ Hz}$, 20%), -3.95 (s, 35%); with addition of **1b**, 126.4 (dd, $J_{Rh,P}$ = 245 Hz,

Scheme 1. Synthesis of calix[4]arene-based diphosphite ligands (3).

 $J_{P,P} = 91$ Hz, 35%), 124.9 (dd, $J_{Rh,P} = 246$ Hz, $J_{P,P} = 91$ Hz, 35%), 119.9 (dd, $J_{Rh,P} = 262$ Hz, $J_{P,P} = 40$ Hz, 5%), 119.2 (d, $J_{Rh,P} = 255$ Hz, 10%), 117.2 (dd, $J_{Rh,P} = 264$ Hz, $J_{P,P} = 42$ Hz, 5%), 113.9 (d, $J_{P,P} = 56$ Hz, 5%), 109.1 (d, $J_{P,P} = 56$ Hz, 5%). (c) *In situ* generated [(**3c**)Rh(CDCl₃)₂]BF₄, 121.7 (d, $J_{Rh,P} = 353$ Hz, ca. 20%); with addition of **1b**, 126.1 (dd, $J_{Rh,P} = 249$ Hz, $J_{P,P} = 96$ Hz, 30%), 124.7 (dd, $J_{Rh,P} = 248$ Hz, $J_{P,P} = 96$ Hz, 30%); 121.5 (d, $J_{Rh,P} = 354$ Hz, 5%), 119.4 (d, $J_{Rh,P} = 255$ Hz, 25%). (d) *In situ* generated [(**3d**)Rh(CDCl₃)₂]BF₄, 122.8 (s, ca. 10%); no significant change with addition of **1b**.

2.4. Hydrogenations

2.4.1. Typical procedure for [Rh(COD)₂BF₄]/**3**-catalyzed asymmetric hydrogenation using (S,S)-**3b** is given

Accurately weighed amounts of $Rh(COD)_2BF_4$ (1.2 mg, 3 μ mol) and (S,S)-3b (6.1 mg, 4.5 µmol) were placed in a pre-oven-dried glass autoclave containing a magnetic stirring bar. The mixture was placed under high vacuum for at least 20 min before purging with Ar. Degassed CH₂Cl₂ (1 mL) was added, the solution stirred for 2–5 min, and then a solution of prochiral olefin (1a, 128.8 mg, 0.9 mmol; 1b, 65.8 mg, 0.3 mmol) in 2 mL of degassed CH₂Cl₂ was added under an Ar atmosphere. H₂ was introduced under 3 atm pressure with several quick release-fill cycles before being set to 5 atm pressure. The solution was vigorously stirred at 30 °C. Following the designated reaction time, H₂ was released and the volatiles removed under vacuum. The residue was dissolved in ether and passed through a short pad of silica gel. Following removal of the solvent under vacuum, the conversion was determined by ¹H NMR analysis and the enantiomeric excess (ee%) value obtained by chiral GC or HPLC. (R)-N-Acetylalanine methyl ester (**2a**): ¹H NMR

(300 MHz, CDCl₃) δ = 6.15 (brs, 1 H), 4.66–4.56 (m, 1 H), 3.76 (s, 3 H), 2.03 (s, 3 H), 1.41 (d, ³*J*=7.2 Hz, 3 H); GC (Chirasil-DEX CB column) *P*=12.0 psi, *T*=180 °C, *t*_R of (*S*)-**2a**=17.29 min, *t*_R of (*R*)-**2a**=17.53 min; [α]_D²⁵=-9.6° (c 1, CHCl₃) [Lit. [26] [α]_D²⁵=-9.2° (c 1, CHCl₃) for (*R*)-enantiomer]. (*R*)-*N*-acetyl-3-phenylalanine methyl ester (**2b**): ¹H NMR (300 MHz, CDCl₃) δ =7.32–7.22 (m, 3 H), 7.10–7.08 (m, 2 H), 6.03 (d, ³*J*=6.0 Hz, 1 H), 4.92–4.86 (m, 1 H), 3.73 (s, 3 H), 3.19–3.05 (m, 2 H), 1.99 (s, 3 H); HPLC (Chiralcel AD-H 250 column) hexane:isopropanol=90:10, flow rate = 0.7 mL/min, UV detection at 214 nm, *t*_R of (*R*)-**2b** = 10.48 min, *t*_R of (*S*)-**2b**=15.21 min; [α]_D²⁵=-13.4° (c 1, MeOH) [Lit. [26] [α]_D²⁵=-15.8° (c 1, MeOH) for (*R*)-enantiomer].

2.4.2. Hydrogenation profiles

Hydrogenations were conducted in a glass autoclave equipped with a sampling needle connected to a three-way stop valve as previously described [27]. This experimental set-up allowed for samples to be taken from the reaction mixture under an H₂ atmosphere. Accurately weighed amounts of Rh(COD)₂BF₄ (typically 2.4 mg, 6 µmol) and (S,S)-3 (11.7–14.3 mg, 9 µmol) were placed in the autoclave containing a magnetic stirring bar. The mixture was placed under high vacuum for at least 20 min before purging with Ar. Degassed CH₂Cl₂ (2 mL) was added, the solution stirred for 20 min, and then a solution of **1a** (typically 257.6 mg, 1.8 mmol) or 1b (typically 131.5 mg, 0.6 mmol) in 4 mL of degassed CH₂Cl₂ was added under an Ar atmosphere such that the desired Rh: 3:1 ratio was obtained. If needed, the autoclave was placed in a pre-warmed oil-bath set at the desired reaction temperature. H₂ was introduced under 7 atm pressure with several quick release-fill cycles before being set to 5 atm pressure. Stirring and

Fig. 1. Crystal structure of calix[4]arene-based chiral diphosphite ligand 3c. Hydrogen atoms are omitted for clarity (C, black; O, red; P, purple). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

timing (t=0 min) were immediately commenced. Reaction samples were obtained (2 drops into an ether-filled GC sample tube) at specified time-intervals (t), and the extent of substrate consumption and ee of (R)-**2** determined by GC or HPLC. Conditions: [Rh(COD)₂BF₄] = 1.0 mM; [(S,S)-**3**] = 1.5 mM; [**1a**] = 0.3 M (S/C = 300) or [**1b**] = 0.1 M (S/C = 100); P(H₂) = 5 atm; T = 30 °C; V_T = 6 mL, solvent = CH₂Cl₂.

3. Results and discussion

3.1. Synthesis and structure of calix[4]arene-based bisphosphite ligands (**3**)

The known BINOL-derived calix[4]arene-diphosphite ligands 3b and 3d, and previously unreported 3a, 3c and 3e-g were prepared following known calixarene alkylation and phosphorylation methods, Scheme 1 [18-25]. Addition of (S)- or (R)-(1,1'binaphthalene-2,2'-diyl)chlorophosphite to appropriately distally O-dialkylated calixarene precursors in the presence of a base (NaH or *n*-BuLi) led to the desired diphosphites **3** in typically 30-60%yields. More sterically hindered calixarenes were obtained predominantly as the cone-conformer while conformationally flexible macrocycles resulted in a mixture of (undetermined) isomers. For the former, ¹H NMR spectra exhibited two distinct AB patterns for the bridging diastereotopic methylene protons, consistent with C₂symmetry, and a single (broadened) resonance in ³¹P NMR spectra (δ 123.9–145.4 ppm). Diffusion of petroleum ether into a toluene solution of 3c yielded appropriate crystals for solid-state structural elucidation [28]. As shown in Fig. 1, the calixarene framework adopts a flattened cone structure whereby the less sterically hindered O-butyl groups are pushed inwards towards the calixarene axis in accordance with previously reported crystal structures for closely related calix[4]arene diphosphites [9i,j].

3.2. In situ generation of catalytically relevant complexes

Formation of Rh/3 complexes was monitored in situ by mixing CDCl₃ solutions of **3** (10 mM) with Rh(COD)₂BF₄ (1 equiv.). For **3a-d**, ³¹P NMR spectra of resulting mixtures showed a predominant doublet centered at δ 119.5–120.6 ppm ($J_{\text{Rh,P}}$ = 255–257 Hz) even after only 5 min. Similarly, two AB systems were observed for the bridging diastereotopic methylene protons. Accordingly, the calixarene-diphosphite ligands adopt a cone-configuration which chelates the Rh-metal resulting in a (time averaged) pseudo-C₂ complex [29]. Resonances consistent with formation of other complexes were only present in minor amounts (ca. 5%). Even highly flexible 3a gave a single isomer in 95% yield (δ 120.6, d, $J_{Rh,P}$ = 256 Hz). Importantly, MS spectra of resulting solids following removal of volatiles were consistent with [(**3a-d**)Rh(COD)]BF₄ formation ([(**3a-d**)Rh]⁺, 1407.5–1559.5 m/e). For **3e** and **3f**. no complex formation was detected under the same conditions.

Fig. 2 shows the ³¹P NMR spectrum for *in situ* formed $[(\mathbf{3c})\text{Rh}(\text{COD})]^+$ following partial hydrogenation of COD (1 atm, 15 min) and addition of **1b** (1 equiv.) [30]. The resonances centered at 121.7 (d, $J_{\text{Rh},P} = 353 \text{ Hz}$) and 126.1 (dd, $J_{\text{Rh},P} = 249 \text{ Hz}$, $J_{P,P} = 96 \text{ Hz}$), 124.7 (dd, $J_{\text{Rh},P} = 248 \text{ Hz}$, $J_{P,P} = 96 \text{ Hz}$) are tentatively assigned as $[(\mathbf{3c})\text{Rh}(\text{CDCl}_3)_2]^+$ and $[(\mathbf{3c})\text{Rh}(\mathbf{1b})]^+$, respectively [30]. Similarly, the same procedure for $[(\mathbf{3b})\text{Rh}(\text{COD})]^+$ yielded $[(\mathbf{3c})\text{Rh}(\mathbf{1b})]^+$ with resonances at 126.4 (dd, $J_{\text{Rh},P} = 245 \text{ Hz}$, $J_{P,P} = 91 \text{ Hz}$) and 124.9 (dd, $J_{\text{Rh},P} = 246 \text{ Hz}$, $J_{P,P} = 91 \text{ Hz}$). For $[(\mathbf{3a})\text{Rh}(\text{CDD})]^+$ no hydrogenation of COD was apparent after addition of H₂ (15 or 60 min, 1 atm), while addition of **1b** (1 or 5 equiv.) to *in situ* generated $[(\mathbf{3d})\text{Rh}(\text{CDCl}_3)_2]^+$ did not generate the corresponding $[(\mathbf{3d})\text{Rh}(\mathbf{1b})]^+$ complex. Thus, the observed solution behavior of Rh/3 complexes varied significantly depending on the R¹- and R²- substituents in **3**.

Fig. 2. ³¹P NMR spectrum following partial hydrogenation of COD in [(3c)Rh(COD)]⁺ (1 atm, 15 min) and addition of 1b (1 equiv.).

Scheme 2. Asymmetric hydrogenation of methyl-(Z)-2-(acetamido)acrylate (1a) and methyl-(Z)-2-(acetamido)cinnamate (1b) catalyzed by *in situ* generated catalysts comprised of [Rh(COD)₂BF₄] and calix[4]arene-based chiral diphosphite ligands [(*S*,*S*)-**3**].

3.3. Catalytic performance

The synthesized calix[4]arene-1,3-diphosphites (**3**) were trialed as chiral ligands in the Rh-catalyzed asymmetric hydrogenation of **1a** and **1b** (conditions: [Rh(COD)₂BF₄] = 1.0 mM; [(*S*,*S*)-**3**] = 1.5 mM; [**1a**] = 0.3 M or [**1b**] = 0.1 M; $P(H_2) = 5$ atm; $T = 30 \degree C$; $V_T = 3$ mL, solvent = CH₂Cl₂) [31]. The active catalyst was generated *in situ* from Rh(COD)₂BF₄ and corresponding (*S*,*S*)-**3** as obtained without further separation of conformational isomers (where applicable), Scheme 2. Both the catalyst activity and extent of chiral induction were influenced by the substituents on the calixarene backbone (R¹ and R²). Furthermore, the catalytic performance showed some substrate dependence with overall better results obtained for the less sterically hindered **1a**. The (*S*,*S*)-catalyst generated the (*R*)-product as expected from corresponding BINOL-based monophosphite [5] and related bidentate phosphite [6,11,32] Rh-catalyzed hydrogenation systems.

Better activity and selectivity was obtained using nonconformationally flexible calixarenes which ensures a "locked" cone conformation, Table 1. Thus, hydrogenation of **1a** catalyzed by Rh/**3a–d** yielded (*R*)-**2a** quantitatively in up to 98% (5–16 h) enantiomeric excess (ee), while flexible **3f** showed mediocre catalytic activity [33]. Even in the presence of 3 equiv of **3f**, only 46% (16 h) and 12% (23 h) conversions were obtained for hydrogenation of **1a** and **1b**, respectively. The reduced activity may reflect the poor chelating ability for **3f** (see Section 3.2).

Table 1

Asymmetric hydrogenation of methyl-(*Z*)-2-(acetamido)acrylate (**1a**) and methyl-(*Z*)-2-(acetamido)cinnamate (**1b**) catalyzed by *in situ* generated catalysts comprised of [Rh(COD)₂BF₄] and chiral calix[4]arene-based bidentate phosphite ligands (**3**)^a.

Entry	Ligand	Substrate	Time (h)	Conv. ^b (%)	ee ^c (%) (config) ^d
1	(S,S)- 3a ^e	1a	16	100	85 (R)
2 ^f	(S,S)- 3a ^e	1b	14	100	72 (R)
3	(S,S)- 3b ^e	1a	11	100	98 (R)
4	(S,S)- 3b ^e	1b	10	100	96 (R)
5	(S,S)- 3c	1a	10	100	93 (R)
6	(S,S)- 3c	1b	21	68	64 (R)
7	(S,S)- 3d	1a	16	100	95 (R)
8	(S,S)- 3d	1b	15	100	76 (R)
9 ^f	(S,S)- 3e ^e	1a	48	100	16 (R)
10 ^f	(S,S)- 3e ^e	1b	48	100	23 (S)
11 ^f	(S,S)- 3f ^e	1a	16	46	91 (R)
12 ^f	(S,S)- 3f ^e	1b	23	12	31 (R)
13	(S,S)- 3g	1a	15	100	74 (R)
14	(S,S)- 3g	1b	17	100	61 (R)

^a Conditions: $[Rh(COD)_2BF_4] = 1.0 \text{ mM}; [3] = 1.5 \text{ mM}; [1a] = 0.3 \text{ M} (S/C = 300) \text{ or } [1b] = 0.1 \text{ M} (S/C = 100); P(H_2) = 5 \text{ atm}; T = 30 °C; V_T = 3 \text{ mL}, CH_2Cl_2 \text{ solvent.}$

^b Isolated yield, conversion determined by ¹H NMR.

^c Enantiomeric excess (ee) determined by chiral GC or HPLC.

 d Absolute configuration (config) determined from [α]_D measurement. ^e Mixture of conformational isomers.

^f 3 equiv. of (*S*,*S*)-**3** used.

Fig. 3. Reaction profiles for the asymmetric hydrogenation of methyl-(*Z*)-2- (acetamido)acrylate (**1a**) catalyzed by *in situ* generated catalysts comprised of $[Rh(COD)_2BF_4]$ and calix[4]arene-based chiral diphosphite ligands [(S,S)-3a-d]. Conditions: $[Rh(COD)_2BF_4] = 1.0 \text{ mM}$; [(S,S)-3a-d] = 1.5 mM; [1a] = 0.3 M; $P(H_2) = 5 \text{ atm}$; $T = 30 \degree$ C; CH₂Cl₂ solvent.

The O-alkyl substituent R² similarly exerts an influence on catalytic performance. Accordingly, hydrogenation of 1a proceeded with quantitative yields (5-16h) in 85, 98, 93, and 95% ee for 3a-d, respectively. The effects were more obvious for more sterically demanding **1b**. While the O-CH₂CH₂CH₃ (**3b**) substituted diphosphite calixarene yielded (R)-**2b** in 96% ee, O-(CH₂)₃CH₃ (**3c**) and $O-CH_2C_6H_5$ (3d) gave (R)-2b in considerably lower ee, 64 and 76%, respectively. The steric effects are not straightforward, however, with the less sterically hindered O-CH₃ (**3a**) similarly vielding (R)-2b in low ee (72%). Catalyst activity was also influenced by the R² substituent. Hydrogenation of **1b** by Rh/**3c** only gave 68% conversion after 21 h (entry 6, Table 1). Fig. 3 contrasts reaction profiles for hydrogenation of 1a catalyzed by Rh/3a-d systems (conditions: $[Rh(COD)_2BF_4] = 1.0 \text{ mM}; [(S,S)-3a-d] = 1.5 \text{ mM};$ $[1a] = 0.3 \text{ M}; P(H_2) = 5 \text{ atm}; T = 30 \degree \text{C}; V_T = 6 \text{ mL}, \text{ solvent} = CH_2Cl_2).$ The hydrogenation rates for **3a**, **3c** and **3d** are considerably lower than for **3b** under these conditions, while the latter exhibited a turn-over-frequency (TOF) [34] of ca. 1300 h^{-1} (5 atm). Thus, optimum catalytic performance is obtained when the R^2 group is -CH₂CH₂CH₃. Such variation on reactivity and selectivity have been previously observed for related hydroformylation systems [9j,32].

Although the principle function of the upper rim *para*substituent \mathbb{R}^1 is to minimize conformational freedom, an influence on enantioselectivity was also observed. Thus, $\mathbb{R}h/3g$ catalyzed hydrogenation yielded (*R*)-**2a** and -**2b** in lower 74% (cf. 95% for **3d**) and 61% (cf. 76% for **3d**) ee, respectively. Here, the added flexibility of the P-ligand resulting from *para*-benzyl substitution may account for the difference. However, electronic effects cannot be ruled out. Hydrogenation of **1b** with related bulky monophosphite ligands have been shown to yield product with lower ee values [5c].

Modification of the BINOL-backbone resulted in considerably lower activity and loss of chiral induction. Thus, AH of **1a** with the Rh/**3e** system gave (R)-**2a** in only 16% ee, while hydrogenation of **1b** resulted in a reversal of the product chirality yielding (S)-**2b** in only 23% ee. Moreover, the system required 3 equiv. of **3e** and long reaction times for high conversions reflecting the lower Rhchelating ability of this ligand (see Section 3.2).

Typical reaction profiles for the optimum *O*-propyl calixarene Rh/**3b** system are shown in Fig. 4 (conditions: [Rh(COD)₂BF₄] = 1.0 mM; [(*S*,*S*)-**3b**] = 1.5 mM; [**1a**] = 0.3 M or [**1b**] = 0.1 M; $P(H_2) = 5$ atm; T = 30 °C; $V_T = 6$ mL, solvent = CH₂Cl₂). The hydrogenation proceeded smoothly following a short incubation period without formation of any side products yielding (*R*)-**2a** in 98% ee with a maximum TOF of 1300 h⁻¹, and (*R*)-**2b** in 96% ee with a TOF of 250 h⁻¹. Product (*R*)-**2** was generated in near constant enantioselectivity throughout the hydrogenation for both systems.

Table 2

Asymmetric hydrogenation of methyl-(Z)-2-(acetamido)acrylate (**1a**) and methyl-(Z)-2-(acetamido)cinnamate (**1b**) with *in situ* generated catalysts comprised of [Rh(COD)₂BF₄] and chiral calix[4]arene-based bidentate phosphite ligands (**3d** or **3b**)^a.

Entry	Ligand	Substrate	S/C	Pressure (atm)	Temperature (°C)	Time (h)	Conv. ^b (%)	ee ^c (%) (config) ^d
1	(S,S)- 3d	1a	300	5	20	2	25	97 (<i>R</i>)
2	(S,S)- 3d	1a	300	5	30	2	40	96 (R)
3	(S,S)- 3d	1a	300	5	50	2	76	96 (R)
4	(S,S)- 3d	1a	1000	5	30	12	41	95 (R)
5	(S,S)- 3d	1a	1000	5	50	12	100	94 (R)
6	(S,S)- 3d	1a	300	2	30	13	100	97 (R)
7	(S,S)- 3d	1a	300	8	30	5	100	95 (R)
8	(S,S)- 3d	1a	300	16	30	4	100	93 (R)
9	(S,S)- 3b	1b	100	5	20	2	100	94 (R)
10	(S,S)- 3b	1b	100	5	30	2	100	96 (R)
11	(S,S)- 3b	1b	100	5	50	2	100	97 (R)
12	(S,S)- 3b	1b	1000	5	50	18	86	92 (R)
13	(S,S)- 3b	1b	100	2	30	11	100	98 (R)
14	(S,S)- 3b	1b	100	8	30	1.5	100	93 (R)
15	(S,S)- 3b	1b	100	16	30	1	100	92 (<i>R</i>)

^a Conditions: [Rh(COD)₂BF₄] = 1.0 mM; [**3d**] = 1.5 mM; [**3b**] = 1.5 mM (mixture of conformational isomers); [**1a**] = 0.3 or 1.0 M; [**1b**] = 0.1 or 1.0 M; V_T = 3 mL, CH₂Cl₂ solvent. ^b Isolated vield, conversion determined by ¹HNMR.

⁻ Isolated yield, conversion determined by ⁻Hiwkk.

^c Enantiomeric excess (ee) determined by chiral GC or HPLC. ^d Absolute configuration (config) determined from $[\alpha]_D$ measurement.

Such results are comparable with other phosphite-based ligands [5,6,12a,32], but cannot compete with the best bisphosphine ligands available in terms of overall efficiency [1,26,35].

The catalysis proceeded best using CH₂Cl₂ (or CH₂ClCH₂Cl) as solvent. Thus, although hydrogenation was quantitative in CH₂Cl₂ (98% ee), only 8-30% conversion (69-85% ee) was obtained in protic solvents (MeOH, i-PrOH, t-BuOH), while 13-48% (57-88% ee) was managed in other non-protic solvents (THF, Et₂O, EtOAc, toluene)(conditions: $[Rh(COD)_2BF_4] = 1.0 \text{ mM}; [(S,S)-3b] = 1.5 \text{ mM};$ $[1b] = 0.1 \text{ M}; P(H_2) = 5 \text{ atm}; T = 30 \degree \text{C}; V \text{ (solvent)} = 3 \text{ mL}$). Table 2 summarizes the influence of reaction parameters on the overall catalysis during hydrogenation of **1a** and **1b** with *in situ* formed Rh/3d and Rh/3b, respectively. Significantly, the enantioselectivity showed a small dependence on hydrogen pressure with better ee values obtained at lower pressures. Thus, (R)-2a was obtained in 97% ee at 2 atm and 93% ee at 16 atm under otherwise identical conditions ($[Rh(COD)_2BF_4] = 1.0 \text{ mM}; [(S,S)-3b \text{ or } 3d] = 1.5 \text{ mM};$ $[1a] = 0.3 \text{ M} \text{ or } [1b] = 0.1 \text{ M}; T = 30 \degree \text{C}; V_T = 3 \text{ mL}, \text{ solvent} = \text{CH}_2\text{Cl}_2),$ while the ee% dropped from 98 to 92% over the same range for (R)-2b. A relatively small drop in enantioselectivity was observed for hydrogenation of **1a** with increasing temperature, 97% (20 °C) and 96% (50 °C), while the ee% increased for 1b from 94 to 97% in

Fig. 4. Reaction profiles for the asymmetric hydrogenation of methyl-(*Z*)-2-(acetamido)acrylate (**1a**) and methyl-(*Z*)-2-(acetamido)cinnamate (**1b**) catalyzed by *in situ* generated catalyst comprised of [Rh(COD)₂BF₄] and (*S*,*S*)-**3b**. Conditions: [Rh(COD)₂BF₄] = 1.0 mM; [(*S*,*S*)-**3b**] = 1.5 mM; [**1a**] = 0.3 M (S/C = 300); [**1b**] = 0.1 M (S/C = 100); $P(H_2) = 5$ atm; $T = 30 \degree$ C; CH₂Cl₂ solvent.

going from 20 to 50 °C. Such findings are consistent with Halpern kinetics involving concurrent and competitive reaction pathways for the two possible diastereomeric intermediates [30a,36]. The enhanced catalyst activity at higher temperature ($50 \circ C$) allowed for 100 and 86% conversions for **1a** (12 h) and **1b** (18 h), respectively, at a substrate-to-catalyst (S/C) molar ratio of 1000 (0.1 mol% catalyst loading).

4. Conclusions

The readily modified calix[4]arene framework allowed for facile generation of a number of chiral diphosphite functionalized ligands capable of forming *in situ* Rh-complexes which catalyzed the asymmetric hydrogenation of methyl acetamidoacrylate (**1a**) and the corresponding cinnamate (**1b**). The upper rim (R¹) and 1,3-*O*-alkylation (R²) substituents strongly influenced the catalyst activity and chiral induction with optimum results obtained when R¹ was $-C(CH_3)_3$ and R² was $-CH_2CH_2CH_3$ (**3b**). Under optimized conditions, the **3b**/Rh system yielded (*R*)-**2a** in up to 98% ee with a TOF of 1300 h⁻¹ (5 atm), and (*R*)-**2b** in 96% ee with a TOF of 250 h⁻¹ (5 atm).

Acknowledgments

This work was supported by the Chinese Academy of Sciences (No. 07210122R0) and the National Natural Science Foundation (No. 20620140429).

References

- (a) J.M. Brown, in: E.N. Jacobsen, A. Pfaltz, H. Yamamoto (Eds.), Comprehensive Asymmetric Catalysis, vol. 1, Springer, Berlin, 1999, (Chapter 5.1);
 (b) T. Ohkuma, M. Kitamura, R. Noyori, in: I. Ojima (Ed.), Catalytic Asymmetric Synthesis, 2nd ed., Wiley–VCH, New York, 2000 (Chapter 1);
 (c) J.G. de Vries, in: C.J. Elsevier (Ed.), The Handbook of Homogeneous Hydro-
- genation, vols. 1–3, Wiley–VCH, Weinheim, 2007. [2] (a) H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 345 (2003) 103;
- (b) H.-U. Blaser, in: E. Schmidt (Ed.), Asymmetric Catalysis on Industrial Scale, Wiley–VCH, Weinheim, 2004.
- [3] (a) W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029;
- (b) A. Börner (Ed.), Trivalent Phosphorous Compounds in Asymmetric Catalysis, Wiley–VCH, Weinheim, 2008.
- [4] (a) See also: S. Castillon, C. Claver, Y. Diaz, Chem. Soc. Rev. 34 (2005) 702;
 (b) A.J. Minnaard, B.L. Feringa, L. Lefort, J.G. de Vries, Acc. Chem. Res. 40 (2007) 1267;

(c) Y.-M. Li, F.-Y. Kwong, W.-Y. Yu, A.S.C. Chan, Coord. Chem. Rev. 251 (2007) 2119;

(d) G. Erre, S. Enthaler, K. Junge, S. Gladiali, M. Beller, Coord. Chem. Rev. 252 (2008) 471.

- [5] (a) M.T. Reetz, G. Mehler, Angew. Chem. Int. Ed. 39 (2000) 3889;
 - (b) M.T. Reetz, T. Sell, A. Meiswinkel, G. Mehler, Angew. Chem. Int. Ed. 42 (2003) 790;
 - (c) M.T. Reetz, G. Mehler, Tetrahedron Lett. 44 (2003) 4593;
 - (d) M.T. Reetz, X. Li, Tetrahedron 60 (2004) 9709;
 - (e) M.T. Reetz, J.-A. Ma, R. Goddard, Angew. Chem. Int. Ed. 44 (2005) 412;
 - (f) M.T. Reetz, X. Li, Angew. Chem. Int. Ed. 44 (2005) 2959.
- [6] (a) M.T. Reetz, T. Neugebauer, Angew. Chem. Int. Ed. 38 (1999) 179;
 - (b) D.G. Blackmond, T. Rosner, T. Neugebauer, M.T. Reetz, Angew. Chem. Int. Ed. 38 (1999) 2196;
 - (c) A. Korostylev, A. Monsees, C. Fischera, A. Börner, Tetrahedron: Asymmetry 15 (2004) 1001;
 - (d) E. Balaraman, K.C.K. Swamy, Tetrahedron: Asymmetry 18 (2007) 2037.
- [7] (a) C. Wieser, C.B. Dieleman, D. Matt, Coord. Chem. Rev. 165 (1997) 93;
- (b) S. Steyer, C. Jeunesse, D. Armspach, D. Matt, J. Harrowfield, in: Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens (Eds.), Calixarenes, Kluwer, Dordrecht, 2001, pp. 513–535;
 - (c) C. Jeunesse, D. Armspach, D. Matt, Chem. Commun. (2005) 5603;
- (d) D.M. Homden, C. Redshaw, Chem. Rev. 108 (2008) 5086.
- [8] (a) C. Jeunesse, C. Dieleman, S. Steyer, D. Matt, J. Chem. Soc., Dalton Trans. (2001) 881;
 - (b) P. Kuhn, C. Jeunesse, D. Sémeril, D. Matt, P. Lutz, R. Welter, Eur. J. Inorg. Chem. (2004) 4602;
 - (c) D. Sémeril, M. Lejeune, C. Jeunesse, D. Matt, J. Mol. Catal. A: Chem. 239 (2005) 257;
 - (d) M. Lejeune, D. Sémeril, C. Jeunesse, D. Matt, P. Lutz, L. Toupet, Adv. Synth. Catal. 348 (2006) 881;
 - (e) A. Sarkar, M. Nethaji, S.S. Krishnamurthy, J. Organomet. Chem. 693 (2008) 2097.
- [9] (a) Selected related references on hydroformylation: R. Paciello, L. Siggel, M. Röper, Angew. Chem. Int. Ed. 38 (1999) 1920;
 - (b) F.J. Parlevliet, M.A. Zuideveld, C. Kiener, H. Kooijman, A.L. Spek, P.C.J. Kamer, P.W.N.M. van Leeuwen, Organometallics 18 (1999) 3394;
 - (c) F.J. Parlevliet, C. Kiener, J. Fraanje, K. Goubitz, M. Lutz, A.L. Spek, P.C.J. Kamer, P.W.N.M. van Leeuwen, J. Chem. Soc., Dalton Trans. (2000) 1113;
 - (d) C.J. Cobley, D.D. Ellis, A.G. Orpen, P.G. Pringle, J. Chem. Soc., Dalton Trans. (2000) 1109;
 - (e) C. Kunze, D. Selent, I. Neda, R. Schmutzler, A. Spannenberg, A. Börner, Heteroatom, Chem. 12 (2001) 577:
 - (f) S. Steyer, C. Jeunesse, D. Matt, R. Welter, M. Wesolek, J. Chem. Soc., Dalton Trans. (2002) 4264;
 - (g) C. Kunze, D. Selent, I. Neda, M. Freytag, P.G. Jones, R. Schmutzler, W. Baumann, A. Börner, Z. Anorg. Allg. Chem. 628 (2002) 779;
 - (h) S. Steyer, C. Jeunesse, J. Harrowfield, D. Matt, Dalton Trans. (2005) 1301;
 - (i) D. Sémeril, C. Jeunesse, D. Matt, L. Toupet, Angew. Chem. Int. Ed. 45 (2006) 5810:
 - (j) D. Sémeril, D. Matt, L. Toupet, Chem. Eur. J. 14 (2008) 7144.
- [10] (a) P.C.J. Kamer, P.W.N.M. van Leeuwen, J.N.H. Reek, Acc. Chem. Res. 34 (2001) 895;
 - (b) Z. Freixa, P.W.N.M. van Leeuwen, Dalton Trans. (2003) 1890;
 - (c) See also Z. Freixa, P.W.N.M. van Leeuwen, Coord. Chem. Rev. 252 (2008) 1755.
- [11] (a) A. Marson, Z. Freixa, P.C.J. Kamer, P.W.N.M. van Leeuwen, Eur. J. Inorg. Chem. (2007) 4587;
- (b) C. Dieleman, S. Steyer, C. Jeunesse, D. Matt, J. Chem. Soc., Dalton Trans. 17 (2001) 2508.
- [12] For related asymmetric transfer hydrogenation example see: A. Quintard, U. Darbost, F. Vocanson, S. Pellet-Rostaining, M. Lemaire, Tetrahedron: Asymmetry 18 (2007) 1926.
- [13] W.A. Nugent, J.E. Feaster, Synth. Commun. 28 (1998) 1617.
- [14] A. Arcadi, S. Cacchi, F. Marinelli, E. Morera, G. Ortar, Tetrahedron 46 (1990) 7151.

- [15] J. Suh, E. Lee, Y. Myoung, M. Kim, S. Kim, J. Org. Chem. 50 (1985) 977.
- [16] C.D. Gutsche, M. Iqbal, Org. Synth. 68 (1990) 234.
- [17] M. Strobel, K. Kita-Tokarczyk, A. Taubert, C. Vebert, P.A. Heiney, M. Chami, W. Meier, Adv. Funct. Mater. 16 (2006) 252.
- [18] M. Makha, C.L. Raston, Chem. Commun. 23 (2001) 2470.
- [19] A. Casnati, A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, Tetrahedron 47 (1991) 2221.
- [20] C.R. Smith, T.V. RajanBabu, Org. Lett. 10 (2008) 1657.
- [21] H.M. Chawla, N. Pant, B. Srivastava, Tetrahedron Lett. 46 (2005) 7259.
- [22] B.S. Creaven, T.L. Gernon, T. McCormac, J. McGinley, A.-M. Moore, H. Toftlund, Inorg. Chim. Acta 358 (2005) 2661.
- [23] K. Iwamoto, K. Araki, S. Shinkai, Tetrahedron 47 (1991) 4325.
- [24] O. Huttenloch, E. Laxman, H. Waldmann, Chem. Eur. J. 8 (2002) 4767.
- [25] B. Tomapatanaget, T. Tuntulani, O. Chailapakul, Org. Lett. 5 (2003) 1539.
 [26] M.J. Burk, J.E. Feaster, W.A. Nugent, R.L. Harlow, J. Am. Chem. Soc. 115 (1993) 10125.
- [27] C.A. Sandoval, T. Ohkuma, K. Muñiz, R. Noyori, J. Am. Chem. Soc. 125 (2003) 13490.
- [28] Diffraction data was collected on a $0.429 \times 0.326 \times 0.207$ mm crystal using a Bruker SMART APEX-CCD diffractometer (Mo_{Ka} radiation, $\lambda = 0.71073$ Å). Mr = 1389.61, hexagonal, P6₁, *a* = 14.561(6) Å, *b* = 14.561(6) Å, *c* = 63.93(4) Å, Z = 6, $\rho_{calcd} = 1.179$ mg m⁻³, $\mu = 0.112$ mm⁻¹, F(000) = 4440, T = 293(2) K. Refinement was conducted on SHELX-97 [37] using full-matrix least-squares on F²; 919 variables and 8135 reflections with $I > 2\sigma(I)$; R1 = 0.0602, wR2 = 0.1218, S_w = 0.908, $\Delta \rho < 0.56$ e Å⁻¹, Flack parameter = -0.250.
- [29] A similar structure to that previously observed for $[Pd(\eta^3-allyl)(3b)]PF_6$ in the solid state is proposed [9i].
- [30] (a) For representative examples see: C.R. Landis, J. Halpern, J. Am. Chem. Soc. 109 (1987) 1746;

(b) J.M. Brown, P.A. Chaloner, G.A. Morris, J. Chem. Soc., Perkin Trans. 2 (1987) 1583;

(c) B.R. Bender, M. Koller, D. Nanz, W. von Philipsborn, J. Am. Chem. Soc. 115 (1993) 5889;

(d) J.S. Giovannetti, C.M. Kelly, C.R. Landis, J. Am. Chem. Soc. 115 (1993) 4040; (e) R. Kadyrov, T. Freier, D. Heller, M. Michalik, R. Selke, J. Chem. Soc., Chem. Commun. (1995) 1745;

(f) I.D. Gridnev, N. Higashi, K. Asakura, T. Imamoto, J. Am. Chem. Soc. 122 (2000) 7183;

(g) T. Schmidt, W. Baumann, H.J. Drexler, A. Arrieta, D. Heller, H. Buschmann, Organometallics 24 (2005) 3842.

- [31] Hydrogenation of dimethyl itaconate (4) under analogous conditions ([4] = 1.0 M, S/C = 1000; t = 20 h) was efficient but poorly selective: (*S*,*S*)-3a, 100 conv. (53% ee); (*S*,*S*)-3b, 100 (17); (*S*,*S*)-3c, 30 (45); (*S*,*S*)-3d, 100 (39); (*S*,*S*)-3f, 100 (27). The (*R*)-configured product was obtained.
- [32] (a) A. Korostylev, D. Selent, A. Monsees, C. Borgmannc, A. Börner, Tetrahedron: Asymmetry 14 (2003) 1905;
 (b) I.D. Kostas, K.A. Vallianatou, J. Holz, A. Börner, Appl. Organometal. Chem. 19

(b) I.D. Kostas, K.A. Vallianatou, J. Holz, A. Borner, Appl. Organometal. Chem. 19 (2005) 1090.

- [33] Importantly, hydrogenations with the corresponding isolated complexes yielded **2b** with the same ee.
- [34] Turn-over-frequency (TOF) is defined as mols of product per mols of catalyst per unit time (h).
- [35] (a) Further selected examples: I.D. Gridnev, Y. Yamanoi, N. Higashi, H. Tsuruta, M. Yasutake, T. Imamoto, Adv. Synth. Catal. 343 (2001) 118;
 (b) W. Tang, X. Zhang, Angew. Chem. Int. Ed. 41 (2002) 1612;
 - (c) N.W. Boaz, S.D. Debenham, E.B. Mackenzie, S.E. Large, Org. Lett. 4 (2002)
 - 2421.
- [36] (a) J. Halpern, in: J.D. Morrison (Ed.), Asymmetric Synthesis, vol. 5, Academic Press, New York, 1994, (Chap. 1);

(b) J.M. Brown, J. Organomet. Chem. 689 (2004) 4006.

[37] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.